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NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of Transportation in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or 

manufacturers’ names appear herein solely because they are considered essential to the objective 

of this report. The findings and conclusions in this report are those of the author(s) and do not 

necessarily represent the views of the funding agency. This document does not constitute FAA 

policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as 

to its use. 
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LEGAL DISCLAIMER 

The information provided herein may include content supplied by third parties. Although the data 

and information contained herein has been produced or processed from sources believed to be 

reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding 

the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, 

conclusions or recommendations provided herein. Distribution of the information contained herein 

does not constitute an endorsement or warranty of the data or information provided herein by the 

Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal 

Aviation Administration nor the U.S. Department of Transportation shall be held liable for any 

improper or incorrect use of the information contained herein and assumes no responsibility for 

anyone’s use of the information. The Federal Aviation Administration and U.S. Department of 

Transportation shall not be liable for any claim for any loss, harm, or other damages arising from 

access to or use of data or information, including without limitation any direct, indirect, incidental, 

exemplary, special or consequential damages, even if advised of the possibility of such damages. 

The Federal Aviation Administration shall not be liable to anyone for any decision made or action 

taken, or not taken, in reliance on the information contained herein. 
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EXECUTIVE SUMMARY 

This report presents a comprehensive evaluation of Detect and Avoid (DAA) systems for Uncrewed 

Aircraft Systems (UAS), focusing on their performance and safety in cluttered environments. By 

integrating modeling, simulation, and experimental data, the study addresses the operational challenges 

of environmental clutter, assesses key risk metrics, and proposes actionable recommendations for 

system improvement. The primary objective is to evaluate how DAA systems manage conflicts with 

intruder aircraft under varying clutter densities while maintaining operational suitability and safety. 

Risk assessments are based on metrics combining the severity and likelihood of hazard outcomes, 

including Near Mid-Air Collision (NMAC) probability and Loss of Well Clear (LoWC). Two key 

datasets form the basis of the simulations. The Glendale Encounter Set provides 665,000 enroute 

scenarios to replicate package delivery flights interacting with real-world Automatic Dependent 

Surveillance-Broadcast (ADS-B) traffic, while the MIT Terminal Area Dataset focuses on terminal 

operations near airports. These datasets enable the simulation of diverse operational conditions critical 

to assessing DAA performance. 

Environmental clutter, defined as non-relevant noise or false targets, significantly impacts DAA system 

reliability. Metrics such as Clutter Flux Density, Clutter Risk Ratio, and Navigable Fraction quantify 

clutter’s effects, highlighting increased alert rates and sensor workload. To better understand and 

mitigate these effects, synthetic clutter environments were generated using real-world data, with 

densities ranging from five false tracks/(nm2-hr) (rare encounter) to 470 false tracks/(nm2-hr), (frequent 

and often multiple targets). 

Simulations were conducted using CAL Analytics’ environment, incorporating ACAS sXu and Raspet 

DAIDALUS DAA algorithms. Enroute simulations with varying clutter densities reveal that while 

clutter alerts are often short-lived and do not frequently lead to LoWC or NMACs, they considerably 

raise the total alert duration, potentially impacting remote pilots in command or Air Traffic Control 

(ATC). The study found that the presence of clutter occasionally forced early evasive actions, 

inadvertently reducing the frequency of some LoWC events but increasing overall workload and 

airspace complexity. 

Terminal operations are especially vulnerable to clutter. Clutter significantly disrupts flight path 

stability and increases the likelihood of missed approaches and erratic guidance cues, even with low 

levels of average clutter flux density (< 13 false tracks/(nm2-hr)). Filtering mechanisms reduced false 

clutter alerts but did not entirely address operational challenges in high-clutter scenarios.  

Pilot surveys from field tests show that environmental clutter, such as non-relevant tracks and noise, 

significantly increases alert rates and operational complexity. Filtering strategies reduce false alerts but 

fail to completely mitigate challenges in high-clutter environments. Field tests emphasize the 

limitations of cooperative sensors like ADS-B, which often generate nuisance alerts from ground-based 

traffic. 

The report concludes with actionable recommendations to enhance DAA system performance. These 

include refining algorithms to dynamically filter clutter, optimizing sensor placement for better 

detection accuracy, and equipping ground control stations with customizable interfaces to reduce pilot 

distractions. Future work will expand testing to high-density airspace and integrate stochastic trajectory 

models to better represent real-world conditions. 
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1 INTRODUCTION & BACKGROUND  

1.1 Final Report Overview 

This report provides a comprehensive analysis of the performance and safety of Detect and Avoid 

(DAA) systems for Uncrewed Aircraft Systems (UAS) under varying operational conditions. It 

focuses on the challenges posed by environmental clutter and assesses mitigation strategies 

through modeling, simulations, and experimental data collection. Key components of the report 

include the evaluation of risk metrics, encounter datasets, clutter modeling, simulation results, and 

operational suitability analyses. 

1.2 Risk Metrics and Encounter Datasets 

The analysis employs composite risk metrics, incorporating severity and likelihood of hazard 

outcomes, to evaluate DAA system performance. Two major datasets—the Glendale and MIT 

Terminal Area encounter sets—are used to simulate realistic operational conditions. These datasets 

feature thousands of unique trajectories for both ownship and intruder vehicles, designed to 

replicate diverse scenarios such as terminal operations and enroute flight. 

1.3 Simulation Environment and Algorithms 

Simulations are performed using CAL Analytics’ fast-time simulation environment, integrated 

with ACAS sXu, a specialized DAA algorithm for small UAS. The Raspet DAA algorithm is also 

explored for its efficiency in conflict detection and avoidance, particularly in complex airspace 

with high traffic density. Key metrics like Near Mid-Air Collision (NMAC) probability and Loss 

of Well Clear (LoWC) are evaluated to verify the efficacy of these systems. 

1.4 Clutter Modeling and Impact Analysis 

Clutter is a significant challenge in DAA systems, potentially causing false detections and 

increasing the risk of collisions. The report introduces metrics such as Clutter Flux, Clutter Risk 

Ratio, and Navigable Fraction to quantify clutter’s impact. Simulated clutter environments, 

ranging from low to high density, are generated using statistical methods to assess system 

reliability. Results reveal that high clutter density reduces navigable and in encounters predesigned 

to generate an alert, actually lead to lower alerts due to the aircraft maneuvering ahead of the 

encounter. While this is a simulation artifact, it should be taken into consideration for the design 

of DAA algorithms to ensure the vehicle returns to its original course in a timely manner. space 

These findings point to the necessity of considering specific DAA instantiations when considering 

the impact of clutter on overall safety metrics. 

1.5 Experimental Data Collection 

Field tests utilizing the Iris Automation Casia G sensor system demonstrate real-world clutter 

detection and avoidance. The experiments, conducted in rural and suburban environments, 

highlight the importance of sensor placement and the challenges of distinguishing clutter from true 

intruder tracks. 

1.6 Operational Suitability and Safety 

Safety analyses reveal the trade-offs between operational suitability and risk mitigation. While 

clutter increases alert rates and operational workload, examples of using filtering in conjunction 

with different detection algorithms are proposed to improve safety margins without overburdening 

the automated DAA systems or Air Traffic Control (ATC). Terminal operation simulations further 

underscore the need for tailored strategies to handle high-clutter environments effectively. 
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1.7 Pilot Surveys 

Section 5 details pilot survey results from a limited series of tests conducted by Mississippi State 

University (MSU) to assess the impact of clutter on DAA system usability in the terminal 

environment. These tests supplied researchers with field data on true and false detections to inform 

future simulation modeling. After the flight test program concluded, pilots and flight test engineers 

were surveyed to gather qualitative feedback on the overall user experience, troubleshooting 

challenges, and the impact of clutter on maintaining safe separation from manned aircraft. 

1.8 Risk Metrics 

Detailed evaluation of risk is based on the composite of severity and likelihood of a hazard 

outcome, identifying hazards and hazard outcomes, and evaluating mitigations and residual risks. 

The primary outcome of interest is reduced separation between ownship and crewed aircraft, with 

risk assessments aligned to recent guidance and severity/likelihood tables. 

The DAA implementation will first be verified using the metrics (shown in Table 1) by comparing 

the results with those obtained in the ACAS sXu operational validation report published by Traffic 

Alert and Collision Avoidance System (TCAS) Program Office. The metrics presented in Table 1 

will be expanded in Section 3, which are used to assess the impacts of clutter on system 

performance and safety. 

Table 1. Analysis Metrics. 

Primitive Metrics Safety Metrics Operational Suitability Metrics 

Horizontal Range P(NMAC) Probability of NMAC Alert Rate 

Vertical Range P(LoWC) Probability of LoWC Reversals 

Slant Range NMAC Risk Ratio Splits 

Closest-Point-of-Approach  LoWC Risk Ratio Alert Durations 

Time of Closest-Point-of-Approach   

Horizontal Miss Distance   

Vertical Miss Distance   

Near Mid Air Collision (NMAC)   

Loss of Well Clear (LoWC)   

Severity of LoWC (SLoWC)   

1.9 Encounter Sets  

For fast-time simulations, a broad encounter set was chosen to allow for the incorporation of 

different clutter densities as outlined in the previous sections. Down selection of existing datasets 

showed that the TCAS/MITRE dataset used in characterizing sXu was a suitable candidate as the 

range of vehicle speeds and altitudes were commensurate with the operating environments 

considered in this work. The following sections detail the datasets and sampling used in the 

remainder of this report. 

1.9.1 Glendale Encounter Set 

The encounters used for this task are drawn from the Glendale Hub-and-Spoke encounters 

[OPVAL]. These encounters feature an ownship vehicle simulating a package delivery, together 

with an intruder vehicle trajectory obtained from actual Automatic Dependent Surveillance-
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Broadcast (ADS-B) traffic observed in the National Airspace System (NAS) and provided by the 

TCAS Program Office and MITRE. 20,000 unique ownship vehicle trajectories radiate at 20-40 

kts from a warehouse in Glendale, CA, at uniform headings from 0 to 359 degrees over a range of 

approximately 3 nm, and a set of 26,845 ADS-B intruder trajectories are paired with them to form 

a total of 1,000,000 encounters that include take-off, enroute flight, and landing. Horizontal and 

vertical miss distances are used to guide the pairing of ownship and intruder trajectories, with the 

pairing being rejected if not within 5 nm and 3,000 feet, respectively. This full set is provided 

together with a reduced set of roughly 665,000 encounters that only include the enroute portion 

and removal of some duplication. The reduced set was used for this effort.  

The encounters were further reduced by selecting 1) a non-alerting encounter set that did not result 

in vehicle-on-vehicle alerting (used to quantify an increase in alert rate due exclusively to clutter), 

and 2) an alerting encounter set that did result in vehicle-on-vehicle alerting (used to investigate 

both operational suitability and safety metrics). Initial simulations of all 665,120 encounters were 

performed resulting in approximately 12,000 alerting encounters. About 2,000 of these alerted 

within the first five seconds and were discarded. An additional 10,000 non-alerting encounters 

were chosen at random. Figure 1 is a composite plot showing the geographic location of the one-

on-one encounters, with the ownship trajectories in green and intruders in red.  

 

 

(a) Ownship & Intruder Top-down View (b) Ownship & Intruder Vertical Profile 

  
Figure 1. Glendale alerting encounter set. 

1.9.2 MIT Terminal Area Encounter Set 

Terminal encounters were simulated using the MIT Lincoln Labs terminal environment datasets. 

These encounters were developed using a Bayesian network-based model specifically tailored for 

assessing the safety performance of DAA systems for UAS. The ownship trajectories focus on 

straight-in approaches at single-runway Class D airports. Using Federal Aviation Administration 

(FAA) radar data from 2015, the model incorporates structured correlations between aircraft 

trajectories and generates one million simulated encounters for safety analysis. Current 

assumptions include the ownship is an uncrewed aircraft operating under Instrument Flight Rules 
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(IFR) on straight-in approach, interactions are limited to a single intruder aircraft either landing or 

taking off, and trajectories are limited to 8 NM and 3000 ft above the airfield. The dataset includes 

trajectory data in binary and text formats, along with encounter conditions and closest point of 

approach information. 

1.9.3 Cooperative Surveillance Parameters 

The surveillance parameters used for the ownship and intruder aircraft are shown in Table 2. The 

ownship vehicle surveillance is modeled as being GPS quality, while the intruder model uses a 

lower-accuracy ADS-B model. Uncertainty models for track sensors are given in Table 3. Of note, 

different sensor modalities (such as ground-based acoustic, onboard radar, etc.) have drastically 

different error statistics which will impact the results presented in Section 5. However, the sensors 

presented below represent two common DAA solutions outside of cooperative sensing schemes 

with error bounds commensurate with ground-based radar and airborne Electro-Optical/Infrared 

(EO/IR) standards. 

Table 2. Ownship and Intruder Vehicle Surveillance Parameters. 

Vehicle Interface 
Lateral Accuracy  

(ft) 

Velocity Accuracy 

(knots) 
σalt (ft) Note 

Ownship WGS84 10 3 1.5 Gaussian Noise 

Intruder ADS-B 978 UAT 8 1 4.7 Gaussian Noise 

 

Table 3. Surveillance Sensor Uncertainty. 

Vehicle Interface Lateral Accuracy (ft) 
Velocity Accuracy 

(knots) 
σalt (ft) Note 

Ground 

based radar 
ASTERIX 200 10 50 

Range dependent error 

statistics. Averages 

presented in table. 

EO/IR - 50 12 100 
Detailed modeling statistics 

listed in Figure 32. 

1.10 Fast-Time Simulation Environment 

1.10.1 Enroute Encounters 

Simulations were performed using CAL Analytics’ in-house fast-simulation environment built 

around the AFSIM developed by the Air Force Research Lab. CAL has integrated a range of DAA 

algorithms, sensor models, and custom add-ons with AFSIM. For the clutter simulations 

considered in this work, sXu was the chosen variant of the ACAS, a version of the system 

specifically developed for small Uncrewed Aircraft Systems (sUAS). This DAA system has been 

integrated with CAL’s fast simulation environment. The well-clear definition for sUAS vs crewed 

aircraft is 2000-ft horizontal and 250-ft vertical with no tau component. The NMAC definition is 

500-ft horizontal and 100-ft vertical. Verification of the efficacy of ACAS sXu guidance is given 

by showing that separation between the ownship and intruder vehicle increases for when using the 

ACAS sXu mitigation, as shown in Figure 2. 
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Figure 2. Horizontal and Vertical Separation: ACAS sXu Mitigation (closed-loop) vs Unmitigated (open-

loop). 

1.10.2 Terminal Operations 

In this report, the Raspet Detect and Avoid (rDAA) algorithm, developed in-house based on the 

core concepts of DAIDALUS, was applied. DAIDALUS provides a robust framework for conflict 

detection and resolution in UAS, but its extensive calculations for each potential conflict can 

become computationally expensive, particularly in complex airspace environments with multiple 

intruders. To optimize this process, the rDAA algorithm simplifies the calculation by focusing on 

two key elements: the avoidance required threshold and the two crossing points of the intruder's 

trajectory. By narrowing down the decision-making process to these two parameters, the algorithm 

reduces the need for intensive, continuous calculations while still maintaining a high degree of 

accuracy in detecting and avoiding potential conflicts. 

The rDAA system offers several key features that enhance its efficiency and effectiveness in 

conflict avoidance. It determines an "Avoidance Required Threshold" based on the relative speed, 

distance, and predicted positions of the ownship and intruder, ensuring that evasive maneuvers are 

only initiated when necessary to minimize unnecessary actions and optimize safety margins. 

Instead of continuously analyzing the entire flight trajectories, the algorithm focuses on two critical 

crossing points where the intruder's path intersects with the ownship’s predicted course, allowing 

for precise conflict risk assessment and timely avoidance guidance. This approach significantly 

reduces computational load, making the Raspet DAA suitable for real-time applications in both 

low- and high-traffic environments. Its streamlined design ensures efficient decision-making, even 

in complex airspace scenarios with multiple potential conflicts, without sacrificing accuracy or 

timeliness.  

Figure 3 shows the flowchart of the rDAA, illustrating the alert ranges and operational concepts. 

This system compares the position, speed, and heading angle of intruders and clutter within the 

self-separation threshold (10,000 ft) to those of the ownship to prepare for collision avoidance. 

When an intruder enters the fixed Avoidance Required Threshold (6,500 ft) range, the system 

identifies the intersection between the ART boundary and the intruder's heading vector, generating 

a recovery band. It then suggests the midpoint of this band as the desired heading to guide 

avoidance maneuvers. 
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(a) rDAA algorithm flowchart  (b) Parameters and operation concept 
Figure 3. Raspet Detect and Avoid System. 

1.11 Clutter Metrics 

The evaluation of clutter and its impact on UAS navigation and detection performance is crucial—

particularly for DAA systems. This section outlines several key metrics developed for clutter 

analysis and their importance in system performance evaluations. 

1.11.1 Types of Clutter in the Air Picture and Their Operational Impact 

In radar-based air picture systems, clutter can be categorized based on its duration, movement, and 

persistence within the monitored space. Understanding these distinctions is critical as different 

types of clutter have varying implications for safety and operational performance, particularly in 

aviation or airspace management systems 

1.11.1.1 Persistent Long-Duration Clutter 

Persistent clutter refers to objects or signals that remain in the radar air picture for an extended 

period of time. This type of clutter often results from stationary or slowly moving objects such as 

terrain, tall structures, wind turbines, or atmospheric phenomena (e.g., temperature inversions or 

moisture layers) that consistently reflect radar signals. 

1.11.1.2 Flux Clutter (Dynamic Entry and Exit) 

Flux clutter refers to clutter that enters and exits the radar air picture intermittently. These objects 

may appear for short or moderate durations and then disappear. Examples include moving vehicles, 

birds, drones, or transient weather events like moving rain showers or small storms. 

1.11.1.3 Short-Duration Clutter (Sparkle) 

Short-duration clutter, often referred to as "sparkle," describes clutter that appears very briefly and 

then promptly disappears. Sparkle clutter can be caused by environmental factors such as 

electromagnetic interference, fast-moving objects (e.g., birds or small drones briefly entering the 

radar beam), or temporary reflections from atmospheric disturbances. 
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1.11.1.4 Comparative Effects of Different Clutter Types 

Each type of clutter—persistent, flux, and sparkle—can have different effects based on where it 

occurs in the air picture and how it behaves over time: 

1.11.1.4.1 Critical vs. Non-Critical Zones:  

Clutter in the approach path or near navigation zones poses a greater safety risk than clutter located 

in non-critical portions of the airspace, where operational concerns are less stringent. 

1.11.1.4.2 Duration and Density:  

A single persistent clutter track may be easier to classify and mitigate compared to a large number 

of small, short-duration clutter tracks moving dynamically. High clutter density (even transient) 

can overwhelm radar systems, whereas long-duration clutter may have more localized but 

persistent impacts. 

1.11.2 Clutter Flux 

Clutter Flux quantifies the dynamic behavior of clutter in a given area or volume over time. It 

measures how frequently clutter appears in a specific region and is calculated as 

𝑐𝑓 = 𝑛𝑐
∆𝑡⁄  

Where nc is the total number of clutter elements detected in a defined region (area or volume) 

during the time interval Δt. Clutter flux is crucial for understanding the rate of clutter appearance 

in the operating environment and assessing how dynamic the clutter behavior is over time. This 

information helps evaluate the overall flow of clutter and its potential impact on UAS operations, 

particularly in environments with frequent false or non-relevant objects. 

Clutter Flux quantifies the overall flow of clutter into a defined region over a given time period. It 

measures how frequently clutter elements appear, providing insights into the dynamic behavior of 

clutter within the operating environment. A higher clutter flux means more false objects are 

detected in the environment, which can overload a system’s detection and tracking capabilities. 

Clutter flux is a direct measure of how dynamic the clutter is in the operating environment. It helps 

with understanding how clutter changes over time and how it impacts sensor workload. In high-

clutter environments, the system could be flooded with false objects, increasing the likelihood of 

near misses or collisions, as relevant targets might be obscured by clutter or avoidance against real 

targets is degraded. A lower clutter flux generally results in safer operating conditions as the 

system can more easily detect and avoid real objects. By monitoring clutter flux, systems can adjust 

their detection thresholds or filtering mechanisms dynamically, improving operational efficiency 

by reducing false positives. Including clutter flux as a benchmark for comparing a system’s 

performance in different environments or with different sensors as well as analyzing how clutter 

flux correlates with system alert rates and false detection events seems like a good approach. 

1.11.3 Clutter Flux Density 

Clutter Flux Density (CFD) measures the intensity of clutter flow in a defined area (or volume) 

over time. It provides a normalized rate, indicating how densely clutter elements appear within a 

given space. It helps quantify the amount of clutter a system must process, which directly affects 

detection, tracking, and navigation performance. 

𝑐𝑓𝑑 =
𝑛𝑐

𝐴 ∗ 𝑡
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Where 𝑛𝑐 is the number of clutter elements in the area or volume, A is the area (or volume) in 

which the clutter elements are present, and t is the time interval over which clutter is measured. 

High clutter flux density indicates a cluttered environment where a large number of false objects 

appear within a small area or volume in a short time. This leads to an increased workload for 

sensors and detection algorithms, potentially reducing system performance or increasing the 

chances of false alarms. Low clutter flux density suggests that fewer clutter elements are present, 

making it easier for systems to detect relevant objects and reducing false detections. CFD provides 

a measurable way to evaluate how much clutter a system must deal with, enabling comparison of 

different environments or sensor performance. For DAA systems, a high CFD may result in more 

false detections or missed targets, increasing the risk of mid-air collisions or near misses. Knowing 

the clutter flux density helps with designing better sensor filtering mechanisms and improving 

decision-making algorithms for handling clutter-laden environments. 

Later in the report, an experiment where ground-based radar and EO/IR systems were used to 

calculate clutter flux is discussed. A value such as 260 false targets nm-2 hr-1 are reported, as are 

the effects of clutter on safety metrics like LoWC and NMAC. This experiment directly applies to 

CFD and can provide insights into how clutter density impacts system performance. 

1.11.4 Clutter Clustering 

Clustering refers to how clutter objects are spatially and temporally grouped together, significantly 

impacting operational safety and suitability. While average clutter metrics provide a broad 

understanding of clutter distribution across an entire region, localized clustering highlights areas 

where clutter density is exceptionally high in critical zones. These localized clusters can occur in 

approach paths, navigation corridors, or other operationally significant regions, creating 

challenges that may not be apparent when analyzing regional averages alone. 

The proximity and density of clutter objects in such localized clusters directly reduce the available 

maneuvering space for UAS. In these high-density areas, sensors may become overwhelmed, 

making it difficult to distinguish real targets from clutter and increasing the risk of near misses or 

failure to maintain well-clear conditions. 

For example, an environment with low average clutter across a region may still have "hot spots" 

of high clutter density where UAS operations become unsafe. Assessing localized clustering is 

crucial for identifying these critical areas, as they require targeted solutions such as: 

• Strategic sensor deployment to improve coverage in high-clutter zones. 

• Adaptive detection algorithms that focus on critical clusters while ignoring low-density 

regions. 

• Resource allocation adjustments, such as prioritizing computational power or sensor 

sensitivity in clustered areas. 

Understanding both average clutter metrics and localized clustering patterns provides a more 

comprehensive assessment of the operating environment. By addressing localized clustering, 

systems can mitigate the operational risks posed by dense clutter regions and ensure safer, more 

reliable UAS performance. 
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1.11.5 Navigable Fraction 

The Navigable Fraction (NF) represents the portion of the airspace or volume that remains free of 

clutter, allowing safe maneuvering. It is given by the ratio of the navigable area or volume to the 

total area or volume 

𝑁𝐹 =
𝐴𝑁

𝐴𝑇
⁄  

or 

𝑁𝐹 =
𝑉𝑁

𝑉𝑇
⁄ , 

where AN and VN are the navigable area and volume, respectively, and AT and VT are the total area 

and volume, respectively. This metric is expected to vary with time as the amount of clutter varies 

and as the separation between clutter elements varies. A high NF means more of the environment 

is available for safe maneuvering, while a low NF indicates clutter is restricting movement. This 

metric helps assess the usable space for UAS to operate without encountering clutter, aiding in 

route planning and maneuverability analysis. A low NF increases the risk of collisions or near 

misses as UAS have less space to navigate. Maintaining a high NF ensures that UAS can safely 

avoid both clutter and other aircraft. Systems can use NF to plan optimal flight paths and avoid 

cluttered areas, leading to more efficient operations. In real-time systems, monitoring NF helps 

adjust navigation strategies dynamically. 

In this report’s conclusion, an approach where clutter clustering based on sensor data from the 

environment is mentioned, which is used to simulate the reduction in NF as clutter density 

increases. This shows how clustering affects available space for safe maneuvering. 

1.11.6 Clutter Risk Ratio Delta 

This metric assesses the change in risk between cluttered and non-cluttered environments. It is 

calculated as 

∆𝑅𝑅 = 𝑅𝑅𝐶𝐿𝑈𝑇𝑇𝐸𝑅 − 𝑅𝑅𝑁𝑂 𝐶𝐿𝑈𝑇𝑇𝐸𝑅. 

By comparing the risk ratios, operators can determine how much more likely a near-miss or 

collision becomes in the presence of clutter, which is vital for safety assessments. A high delta 

means clutter significantly increases the risk of incidents, while a low delta suggests clutter has 

little impact. It is a direct indicator of how much clutter increases the operational risk, making it 

useful for risk assessments and safety planning. This metric helps determine if and when systems 

need to deploy more advanced filtering or detection mechanisms so that the ability to avoid other 

aircraft is not degraded.   

1.11.7 Clutter Probability of Detection 

Clutter Probability of Detection Ratio (CPDR) compares the likelihood of detecting an object in a 

cluttered environment versus a non-cluttered one and is given by 

𝐶𝑃𝐷𝑅 = PDCLUTTER
𝑃𝐷𝑁𝑂 𝐶𝐿𝑈𝑇𝑇𝐸𝑅

⁄ . 

Here, PD refers to the Probability of Detection, which measures the likelihood of correctly 

detecting an object (e.g., an aircraft) in the presence of clutter. A CPDR closer to one indicates 
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that clutter has minimal impact on detection, while a low CPDR suggests that clutter significantly 

hinders detection performance, increasing the risk of missed detections and safety violations. 

However, it is important to extend this analysis to the Probability of Track (PT). While detection 

refers to identifying objects in the sensor’s field of view, tracking involves maintaining continuity 

across detections over time to form a reliable trajectory. Tracking systems are often limited by 

computational resources or algorithmic constraints and may struggle to differentiate between 

clutter and true targets. Issues such as: 

Track stealing (where a track intended for an aircraft gets associated with clutter), 

Track splits (where a single track mistakenly breaks into multiple tracks), or 

Track merges (where clutter and target detections are combined), 

can cause disruptions in maintaining reliable tracks. These errors often occur in cluttered 

environments where overlapping detections challenge the tracker’s ability to resolve objects 

accurately. 

Furthermore, there is a distinction between the Probability of Track and the Probability of a 

Classified Track of Sufficient Maturity. Even if a track is initiated, it may not reach the maturity 

required to be passed on to higher-level alerting and avoidance algorithms. Maturity involves 

ensuring the track is consistently reliable, well-classified (e.g., as an aircraft vs clutter), and stable 

enough to influence operational decisions. 

In summary, while CPDR evaluates the raw detection performance in clutter, the Probability of 

Track and Probability of Classified Track highlight the added challenges in: 

Forming and maintaining stable tracks, resolving clutter from true targets, and Ensuring tracks are 

mature enough to contribute to collision avoidance systems. 

Systems with low CPDR or low track probabilities in cluttered environments may need to: 

Optimize detection and tracking algorithms, Implement filtering techniques to reduce clutter-

induced track errors, and Improve resource allocation to prioritize true targets over clutter. 

By addressing both detection and tracking aspects, a more comprehensive evaluation of system 

performance in cluttered conditions can be achieved, ensuring operational safety and reducing the 

risk of false alarms or missed targets. 

1.11.8 Missed Object and False Track Flux 

Metrics such as Missed Relevant Object Flux (MROF) and False Track Flux (FTF) provide insight 

into the effectiveness of detection systems. MROF evaluates how many relevant objects are missed 

due to clutter, while FTF quantifies how many false tracks are generated. Both metrics are 

calculated using the normalized number of missed objects or false tracks in a given area over time 

as 

𝑀𝑅𝑂𝐹 =
𝑛𝑀

∆𝑡⁄  

and 

𝐹𝑇𝐹 =
𝑛𝐹

∆𝑡⁄ , 
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where 𝑛𝐹  and 𝑛𝑀 represent the normalized number of false tracks and missed objects, respectively. 

These metrics quantify the rate at which relevant objects are missed or false tracks are generated 

in a cluttered environment. High values indicate poor system performance. These metrics are 

crucial for evaluating detection and tracking reliability. A system with high MROF may require 

recalibration, while high FTF indicates issues with clutter filtering. Missing relevant objects can 

lead to serious safety incidents, while generating false tracks increases system workload and may 

cause unnecessary maneuvering, leading to inefficiency and potential hazards. These metrics help 

identify inefficiencies in a system’s clutter management, allowing for better resource allocation 

and more reliable detection performance. The ground-based radar and EO/IR systems discussed 

herein provided data on missed objects and false tracks, which were analyzed under varying levels 

of clutter to determine system performance. 

1.11.9 Missed Relevant Track Flux 

Missed Relevant Track Flux (MRTF) measures the number of relevant tracks missed in the 

cluttered environment over time (and is formulated similarly to MROF). This metric is key for 

tracking system performance, particularly in dense clutter scenarios where relevant objects may 

be difficult to differentiate from clutter. A high MRTF suggests that clutter is obstructing a 

system’s ability to track real objects. This metric provides insight into the tracking performance of 

a system, especially in complex or dense environments where clutter may prevent the system from 

following important objects. Track classification plays a crucial role here, as the ability to 

differentiate between clutter tracks (non-aircraft) and relevant tracks (real aircraft) directly impacts 

MRTF. In environments where the number of non-aircraft tracks is significantly higher than real 

aircraft tracks, the importance of accurate classification cannot be overstated. Track classification 

is essential not only for safety analysis but also for managing the track capacity of the system. 

Many DAA systems define requirements based on the expected number of aircraft in the operating 

environment, often underestimating the additional load caused by clutter tracks. Missing relevant 

tracks can increase accident risk, particularly in environments where constant tracking is required 

for safe navigation. A high MRTF highlights a critical issue in maintaining safe operations. By 

monitoring MRTF, tracking algorithms can be adjusted to ensure that real objects are not missed, 

leading to more efficient and reliable operations. 

1.11.10 Probability of Retained Clutter 

The probability that clutter is retained by the system, Pclutt_kept, is important for understanding 

how often clutter is falsely classified as a relevant object. This metric is closely related to another 

metric, Probability of Non-Clutter Return Removal, which assesses how often relevant objects are 

mistakenly removed by the system. Ideally, both probabilities should be minimized to ensure 

accurate clutter filtering and reliable object detection. This metric represents the likelihood that a 

system fails to remove clutter from its detection or tracking processes. A high probability of 

retained clutter indicates poor clutter filtering. It helps with the evaluation of a system’s ability to 

filter out irrelevant or false objects, which is essential for reducing false alarms and focusing on 

relevant targets. If clutter is retained, false alarms and unnecessary maneuvers can result, 

increasing the risk of confusion and collisions. Ensuring low retention of clutter is important for 

maintaining safety. Reducing retained clutter improves system efficiency by ensuring resources 

are focused on real objects, not false positives. 
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1.11.11  Summary 

These clutter characteristics and system performance metrics provide a comprehensive framework 

for evaluating the impact of clutter on UAS DAA systems. By assessing factors like clutter flux, 

clutter flux density, clustering, and detection probabilities, these metrics enable a thorough analysis 

of system capabilities and risk, leading to safer and more reliable autonomous aircraft operations. 

2 SENSOR DATA COLLECTION AND ANALYSIS 

2.1 Introduction 

The following sections detail the collection of field data, modeling, and simulation of clutter in 

realistic environments. Data collection spanned several months and was enhanced by various 

ongoing DAA-related programs at MSU and the Ohio State University (OSU). MSU collected 

ground-based and airborne Electro-Optical (EO) DAA sensor data, ground-based small form factor 

radar, and ground-based acoustic array data while OSU’s efforts focused on the collection of wide-

area ground-based radar data. The following section discusses the collection of ground-based EO 

and radar data but only includes the efforts and results of modeling ground-based EO data. Future 

work will include modeling the remaining other DAA sensors. 

2.2 Iris Automation’s Casia-G Sensor 

Iris Automation’s Casia G was used for the second half of MSU’s A57 clutter data collection. This 

system is a 14in L x 11.5in W x 6in H stationary ground-based aircraft detect and alert system with 

varying mount functionality (wall, pole, etc.) It makes use of a built-in ADS-B system and six 

cameras to obtain real-time data on multiple tracks (airplanes, helicopters, drones, etc.)  It provides 

full optical, 360⁰ field of view for detections, remote Pilot in Command access, a possibility for a 

mesh network for larger coverage, and unlimited range and maximum single node range of 3024m 

(about 1.88 mi). 

 

Figure 4. IRIS Automation’s Casia G. Sensor (left), Judy power supply system (center) and SIERRA 

wireless router (right). 

2.2.1 Methodology and Safety Measures 

Safety risks were minimal for Casia G data collection. Almost all risks were environmental (heat, 

insects/bugs, tripping hazards). Most of the data collection that occurred during A57 took place 

during a pre-planned flight test by Raspet. The researchers’ interest lies in observing “non-

cooperative” intruders, so any part of the log files where the ownship was present, was removed. 

To achieve this, the times when the ownship entered and exited the test area were recorded. These 

matching timestamps were then located in the log files, and that time block was removed. Again, 
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this procedure was only done for data collected during a known flight test. This data was collected 

at two different MSU-owned “farms”, North Farm and South Farm, located on the outskirts of 

Starkville. These sites were chosen because they gave researchers a chance to collect in a “rural” 

environment. Some of the collected data occurred on top of Rice Hall on the campus of MSU. This 

site was chosen due to Rice being one of the taller buildings on campus, with mostly unobstructed 

views, and also accessible due to ongoing construction. Researchers wanted to test if the Casia 

collected any differently if stationed at a higher elevation. It also provided researchers with a more 

suburban environment as opposed to the farms where a large majority of the collections were 

taken. 

 
 

Figure 5. South farm data collection location. 
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Figure 6. Rice Hall data collection location. 

A small sample of data was collected behind the Raspet Flight Research Lab Facility, on the 

grounds of the KSTF airport. This data was more experimental in nature and not used for any of 

the analyses.  

2.2.2 Conclusions 

All of the data collected with the Casia G systems occurred either in Starkville or just on the 

outskirts of the town. Due to this, the types of clutter or intruders available were mostly the same 

for each testing day. This being said, Starkville does have a fairly active airspace. Multirotors 

commonly used for research, general aviation aircraft, military aircraft, and large passenger aircraft 

can all be seen frequently.  

While the Casia G appears to have some inconsistencies, especially when objects appear to be at 

the limits of its detection range, it does provide the researcher with extensive data sets, including 

images and recordings. The Casia G system offers a masking function for objects in the field of 

view that trigger false detections, but this was not used during any collections. Iris also offers an 

application that can provide real time intruder tracks and Casia G status. 

To test if elevation difference played a role in increasing the amount or type of detections, two 

Casia G units were placed on top of a building on MSU’s campus. It was found that this height 

difference did not play a significant factor in increasing or decreasing detections. Moreover, it 

seems that the sole difference maker in varying data sets was the amount of traffic or clutter in the 

airspace on that particular day. Any future data collection should ideally occur in a more populated 

area with a busier airspace. This would allow researchers to observe how the system handles a 

larger volume and wider classification range of intruders, while also refining modeling and 

simulation efforts.  
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2.3 EO/IR Modeling and Analysis Efforts  

This manuscript summarizes MSU Industrial and Systems Engineering Department’s approach to 

modeling EO/IR clutter using statistics and stochastics. Even though the researchers have selected 

three different environmental configurations (low, medium, and high) based on the density, the 

underlying approach can be consistent. The goal is to simulate the EO/IR clutter using the real data 

using distribution fitting. Figure 7 summarizes the proposed approach.  

 

Figure 7. Clutter modeling using distributed fitting. 

2.3.1 Approaches Used 

The first step is to check the scatter plots of all the variables (in this case, they are latitude, 

longitude, and altitude). If no strong correlation is observed among them, one can use univariate 

distribution per each variable and aggregate them later. However, if any significant correlations 

are observed among latitude, longitude, and altitude, then multivariate distribution should be 

considered. For the univariate distribution fitting, the researchers considered 22 well-known 

distributions (Normal, Weibull, Beta, etc.). If any of those distributions matched this clutter data 

set, the closest distribution was selected to generate simulated clutter. If none of them matched the 

real data, the team constructed the empirical distribution (cumulative density function) to simulate 

the clutter data set.  

2.3.2 Case 1: High – Max 

The first case considers a high clutter-density environment, and it is required to check any 

correlation between all the density variables (Latitude, Longitude, and Altitude) before simulating 

clutter. Table 4 summarizes the correlation values between all three, and the researchers observed 

that there is no significant correlation.  There is very little correlation observed between latitude 

and longitude, while altitude shows a slightly negative correlation with both latitude and longitude. 

This is likely because airborne data is more frequently observed at higher altitudes, which differ 

from ground clutter trajectories. While the team assumed the independence of the variables in this 

model, generalizing it to highly correlated environments would require accounting for the joint 

distributions of all three variables.   

Table 4. Correlation between latitude, longitude, and altitude in a high clutter density environment. 

Correlation (r) Latitude Longitude Altitude 

Latitude 1 0.02396 -0.1166 

Longitude 0.02396 1 -0.1148 

Altitude -0.1166 -0.1148 1 
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The researchers used the Person correlation coefficient, as defined in Equation (1): 

 𝑟 =  ∑
(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√∑ (𝑥𝑖−�̅�)𝑛
𝑖=1 ∑ (𝑦𝑖−�̅�)𝑛

𝑖=1

𝑛
𝑖=1   (1) 

where 𝑖 represents the data index, and 𝑛 means the total number of observations. Variables 𝑥 and 

𝑦 are of interest (in our application, they will be latitude, longitude, and altitude), a bar notation 

means the sample average. As the r value is closer to either 1 or -1, it means two variables are 

significantly correlated. However, the researchers failed to observe any significant correlation 

among any variables.  

Figure 8. Scatter Plots among latitude, longitude, and altitude in a high density. 

Figure 8 also provides the correlation using the scatter plot, demonstrating that no significant 

correlations are observed among the three variables. Thus, both Table 4 and Figure 8 support this 

approach to handle each variable separately. The team selected 22 well-known distributions, and 

they were fitted; however, none of the distributions were significant enough to demonstrate any of 

those three variables – Latitude, Longitude, and Altitude. Therefore, the team decided to find 

empirical Cumulative Density Functions (CDFs) of all three variables to simulate them. 
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Figure 9. Histograms of (a) Latitude, (b) Longitude, and (c) Altitude in a high density. 

Figure 9 depicts three histograms of Latitude, Longitude, and Altitude. From those histograms, 

one can observe two things: 1) each probability density function shows a combination of (more 

than) two distinct distributions, and 2) truncated areas in the Altitude probability density function 

fail to any distributions’ fitting. This leads to the decision to use empirical CDFs. Algorithm 1 

demonstrates the procedure to generate random numbers following a specific CDF: 𝐹.  

Algorithm 1: Random Number Generation Using Empirical CDF 

Step 1. Find three Empirical CDFs  𝐹𝐿𝑎𝑡(𝑥),  𝐹𝐿𝑜𝑛𝑔(𝑥),  𝐹𝐴𝑙𝑡(𝑥) 

Step 2. Generate three uniform random variables 𝑈1, 𝑈2, 𝑈3 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  

Step 3. Using inverse mapping 𝐹−1  to simulate all the variables  

Step 4. Construct Simulated Clutter (𝐿𝑎𝑡,  𝐿𝑜𝑛𝑔,  𝐴𝑙𝑡) 

Three graphs in Figure 10 illustrate three empirical CDFs of Latitude, Longitude, and Altitude. It 

is noted that in the CDF of Altitude, there exists a straight line from 300 to 400 miles. It represents 

that there were no signals detected in this altitude range. This signal “black hole” is also observed 

when checking the 2D representation of latitude and longitude. 
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Figure 10. Empirical CDFs – latitude, longitude, and altitude in a high density. 

Figure 11 compares real clutter vs simulated clutter based on empirical distribution fitting 

methods. The underlying pattern is roughly captured, but in the real EO/IR clutter, a “black hole” 

is observed in the middle of the area. If one decides to incorporate it in the simulated clutter, one 

can use a truncated random number generation approach by eliminating any simulated clutter 

located in the ellipsoid.  
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Figure 11. Real EO/IR clutter vs Simulated EO/IR clutter in a high-density. 

Since the researchers removed certain altitude ranges to exclude any points due to the aircraft (not 

the noise), the truncated simulated clutter generation algorithm was used. Algorithm 2 summarizes 

the details. If one decides to exclude any clutters in a certain range of altitudes, Algorithm 2 can 

be used accordingly.  

Algorithm 2. Truncated Simulated Clutter Generation. 

Step 0. Enough number of clutters generated. Yes -> Terminate. No -> go to Step 1. 

Step 1. Simulate Clutter using Algorithm 1.  
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Step 2. Is the clutter located in the ellipsoid?  

 Yes -> Remove it and move to Step 1.    No -> Keep it and move to Step 1.  

The medium and low levels of clutter (case 2 and case 3) are also considered, and the same 

techniques are applied. 

2.3.3 Case 2: Medium 

Like the first case, it is required to check whether any significant correlations are observed. As 

Table 5 shows, there are no significant correlations between latitude and longitude. However, 

altitude and latitude show a certain level of correlation. Thus, when one generates a clutter with 

altitudes, the joint density (𝑓(𝑥, 𝑦)) will be considered.  

Table 5. Correlation between latitude, longitude, and altitude in a medium clutter density environment. 

Correlation (r) Latitude Longitude Altitude 

Latitude 1 0.03976921 0.35365983 

Longitude 0.03976921 1 -0.04997897 

Altitude 0.35365983 -0.04997897 1 

 

Figure 12 shows the scatter plots of all the variables. One can find that there exists a slightly 

positive correlation between altitude and latitude, meaning that as an altitude value grows, the 

latitude value also increases. Therefore, the joint density will be considered, when simulating 

clutter along with altitude information. 
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Figure 12. Scatter plots in a medium clutter density environment. 
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Figure 13. Histograms of latitude, longitude, and altitude in a medium clutter density environment. 

To simulate the clutter in a medium-clutter density environment, the team selected 22 well-known 

distributions, and they were fitted; however, none of the distributions were significant enough to 

demonstrate any of those three variables. As shown in Figure 13, none of the three histograms 

show any specific patterns matching any known distributions. Therefore, the researchers decided 

to find empirical CDFs of all three variables to simulate them. 
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Figure 14. The cumulative density function of latitude, longitude, and altitude in a medium clutter density 

environment. 

The three images in Figure 14 show three CDFs for all three variables. Using all the CDFs as well 

as reverse mapping described in Algorithm 1, the team successfully simulated clutters in a medium 

clutter density environment, as shown in Figure 15. It is found that the relative frequency is well 

incorporated in the simulated clutter. The same approach has been applied to the last configuration 

(low-level density environment).  
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Figure 15. Real EO/IR clutter vs Simulated EO/IR clutter in a medium clutter density environment. 

2.3.4 Case 3: Low 

Since it is required to check whether any significant correlations are observed before clutter 

simulation, researchers checked the correlation values. Interestingly, As Table 6 shows, a 

significant positive correlation between latitude and longitude is observed (0.48). Moreover, the 

altitude is correlated with both latitude and longitude, which implies that all the joint densities 

(𝑓(𝑥, 𝑦), 𝑓(𝑥, 𝑧), 𝑓(𝑦, 𝑧)) should be considered.  

Table 6. Correlation between latitude, longitude, and altitude in a low clutter density environment. 

Correlation (r) Latitude Longitude Altitude 

Latitude 1 0.4800939 0.1673565 

Longitude 0.4800939 1 0.3086017 

Altitude 0.1673565 0.3086017 1 
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To have a better understanding of all three correlations, all the scatter plots are developed in Figure 

16. The positive correlations are observed in all three pairs, so all three joint densities should be 

derived. Moreover, it is also found that the altitudes between 200 and 400 and longitudes between 

-88.78 and -88.77 are omitted, which were excluded in pre-processing. Those points were not 

considered clutters but the results of the aircraft operations.  

 

Figure 16. Scatter plots in low clutter density environment. 
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Figure 17. Histograms of latitude, longitude, and altitude in a low clutter density environment. 

To simulate the clutter in a low-clutter density environment, the team selected 22 well-known 

distributions in high- and low-clutter density environments. As shown in Figure 17, none of the 

distributions were significant enough to demonstrate any of those three variables, meaning that 

none of them matched any known distributions’ probability density functions. Therefore, the team 

decided to find empirical CDFs of all three variables to simulate them, as shown in Figure 18. 
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Figure 18. The cumulative density function of latitude, longitude, and altitude in a low clutter density 

environment. 

The three images in Figure 18 show three CDFs for all three variables. Using all the CDFs as well 

as reverse mapping described in Algorithm 1, the researchers simulated clutters in a lower clutter 

density environment, as shown in Figure 19. In this simulation, the joint density has not been 

considered yet. The researchers identified it as a future work: the team will incorporate all the joint 

densities and simulate the clutters in a low clutter density environment. 
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Figure 19. Real EO/IR clutter vs Simulated EO/IR clutter in a medium clutter density environment.  

Future work will include incorporation of trajectories using stochastic modeling. The team will 

include trajectories of the clutter using Stochastic models- such as Brownian Motion. The 

following tentative algorithms will be applied:  

Step 1. Define the Parameters: 

Initial positions (x0, y0, z0) are selected from the initialized distribution.  

Diffusion coefficient (D): A constant related to the magnitude of randomness in the motion. 

Another way to call it is “drift.” Researchers will calculate average drift using all the trajectories. 

Step 2. Generate Random Displacements:  
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Brownian motion involves adding random displacements to the current position at each time step. 

The displacements will be drawn from a normal distribution with mean zero and variance 

(2  × 𝐷 × ∆𝑡). One can use a random number generator for this purpose. The random 

displacements can be generated as follows: 

2.1 Generate two random numbers ∆𝑥 & ∆𝑦 , which are sampled from the empirical distribution of 

the collected ∆𝑥,  ∆𝑦  

2.2 Update the position at each time step:  

 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + ∆𝑥 , 𝑦(𝑡 + ∆𝑡) = 𝑦(𝑡) + ∆𝑦 

Step 3. Repeat for Multiple Time Steps: Continue updating the position of the object as 

researchers reach to the enough steps as needed. The distribution of all the simulated trajectory 

lengths will be the same as the empirical distribution of real trajectory lengths.  

Completion of implementing and applying algorithms will generate enough trajectories, capturing 

dynamic behaviors of clutters in the observed area.  

2.4 Data Modeling and Synthetic Dataset Generation 

Step 1: Clean data. 

The field data was collected at various sites to vary the rate and density of clutter. A few steps 

were taken to ensure that the only data digested by the following process was clutter data. First, a 

description of some of the nuances of the EO/IR Ground-based DAA system was discussed. The 

DAA system used attempts to classify the detected intruders as birds, drones, crewed aircraft, or 

other more specific classes. The team, through experience operating and analyzing the system’s 

performance, determined that a few filters were necessary to ensure that only clutter data was fed 

into the simulated clutter generator. The first filter removed any data where the researchers knew 

a crewed aircraft was present within the surveillance volume of the system. This usually occurred 

with data that was taken from field tests for various ASSURE and related projects. The second 

filter then removed any classification of “BIRD” as those alerts would be removed in standard 

operations. The remaining clutter data then had only detections and tracks for alerts that threatened 

the safety of the operation, while still including tracks of fixed-wing aircraft, rotorcraft, or other 

aircraft that were not explicitly identified as crewed. It should be noted, that in real-world systems, 

misclassifications of birds as aircraft may still occur, and such cases would not necessarily be 

removed by the system. As described earlier, three representative datasets were selected for 

processing. These datasets range from the lowest observed clutter rate, defined as clutter tracks 

per hour, to the highest observed clutter rate. 

Step 2: Characterize data. 

Once the data was appropriately filtered, researchers characterized the behavior of the clutter data. 

Various approaches were used to understand the relationships between elements. The final 

approach used simple distributions of range from sensor, altitude, and velocities. The data had the 

following characteristics. The following cartesian coordinate system is used for the following 
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described dataset: X represents the north-to-south position of each track, Z represents the east-to-

west position of each track, and Y represents the vertical position of each track. 
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Figure 20. Altitude distribution of single clutter dataset, in feet. 

 

Figure 21. Velocity in x-direction (horizontal) for clutter data, in feet per second. 

 

Figure 22. Velocity in y-direction (horizontal) for clutter data, in feet per second. 
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Figure 23. Velocity in z-direction (vertical) for clutter data, in feet per second. 

Step 3: Initiate a point 

Once the distributions of the dataset were understood, the first step in forming new clutter tracks 

was the initialization of a point in x-y-z space. The range from sensor distribution influenced a 

variable, r, that would be used with a relative angle between the simulated clutter’s initial state, 

and the sensor’s north heading. The research team determined, through experience, that the angle 

at which clutter occurred was dependent on the presence of physical objects detected during field 

data collection. One major assumption of the simulated clutter dataset is that, for convenience, 

there is assumed to be a uniform possibility of a clutter track initiating anywhere within the 

surveillance volume but constrained by the range from sensor distribution. 

Therefore, a single clutter track was determined by selecting a random range from the range from 

the sensor distribution, selecting a random angle from a uniform distribution from 0 to 360, 

selecting a random altitude from the altitude distribution, and then converting to an x-y-z Cartesian 

coordinate. 

𝑥 = 𝑟𝑓𝑟𝑜𝑚𝑆𝑒𝑛𝑠𝑜𝑟 ∗ cos(𝛼) 

𝑦 = 𝑟𝑓𝑟𝑜𝑚𝑆𝑒𝑛𝑠𝑜𝑟 ∗ sin(𝛼) 

𝑧 = 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 

Finally, researchers determined that the length of the track for each field data clutter track could 

be used to interpolate each clutter track. Kinematic equations were used to extrapolate a single 

initial data point to a track with a representative length as determined by randomly selected values 

from the length of track distribution. 

The following data was sent to the next steps within the process. 
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𝑆𝑡𝑎𝑡𝑒𝑐𝑙𝑢𝑡𝑡𝑒𝑟(1) = [𝑡 𝑥 𝑦 𝑧 ] 

In the above, t is the length of the track, and [x y z] represent the initial position of the clutter track. 

The process then takes representative velocities in the x, y, and z directions and attaches them to 

the initial state vector for a clutter track. This further expands the initial state as below: 

𝑆𝑡𝑎𝑡𝑒𝑐𝑙𝑢𝑡𝑡𝑒𝑟(1) = [𝑡 𝑥 𝑦 𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧] 

Step 4: Interpolate 

Researchers kinematically interpolated the initial state vector for the length of track, t. Researchers 

determined that assuming zero acceleration, while convenient, did not produce tracks that appeared 

to behave like the field data. Researchers added a small acceleration based on a normal distribution 

in the horizontal and added a small vertical acceleration based on a normal distribution. The 

resulting simulated dataset appeared more realistic as a product of the small acceleration. 

Step 5: Expand to a larger area 

As the intent of the clutter data collection and analysis process is to simulate the effect of clutter 

on UAS attempting to avoid crewed aircraft, the dataset needed to be expanded to a wider area. 

While the sensor had a one-and-a-half nautical mile range at best, the encounter set spanned up to 

10 miles horizontally. To use this simulated data, the approach needed to produce a larger area of 

clutter data. To do this, researchers assumed there were 25 evenly distributed sensors across a 10 

by 10 nautical mile volume. The approach for simulating data was then repeated 25 times for each 

unique sensor location for 30 minutes of simulated data and produced the following result. 

 

Figure 24. Resulting wider area of clutter data, with 30-minute length. 

Step 6: Compare back 

Researchers then compared the distributions of the real data versus the simulated data. The 

following charts visualize the likeness of the two datasets. Since the simulated data covered 25 

times the area of the field data, the distribution formed with a much larger dataset. 
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Figure 25. Various distribution comparisons of field data (left) and simulated data (right). 

The synthetic clutter was then passed along to the A57 simulation team for fast-time encounter 

simulations to understand the modeled clutter’s effect on operational suitability and safety. 

3 ENROUTE MODELING AND SIMULATION RESULTS 

3.1 Simulation Setup 

The encounters used for this task are drawn from the Glendale Hub-and-Spoke encounters 

[OPVAL]. These encounters feature an ownship vehicle simulating a package delivery, together 

with an intruder vehicle trajectory obtained from actual ADS-B traffic observed in the NAS and 

provided by the TCAS Program Office and MITRE. 20,000 unique ownship vehicle trajectories 

radiate at 20-40 kts from a warehouse in Glendale, CA, at uniform headings from 0 to 359 degrees, 

and a set of 26,845 ADS-B intruder trajectories are paired with them to form a total of 1,000,000 

encounters that include take-off, enroute flight, and landing. The reduced set of roughly 665,000 

encounters only included the enroute portion and removal of some duplication. The reduced set 

was used for this effort.  

Initial simulations of all 665,120 encounters were performed resulting in approximately 12,000 

alerting encounters. About 2,000 of these alerted within the first five seconds and were discarded. 

An additional 10,000 non-alerting encounters were chosen at random, resulting in a total of 20,000 

encounters used in the following analysis. 

3.2 Ground Based Radar Results 

3.2.1 Safety Analysis: Nominally Alerting Encounters 

The safety analysis in Table 7 revealed the unexpected result that the total number of LoWC was 

reduced when clutter was added to the one-on-one encounters. As noted previously, the reduction 

in LoWC is an artifact of the simulation setup in which the ownship was biased towards an 

encounter, so any motion induced by clutter would have the net effect of reducing the likelihood 

of encountering the original intruder. This should be considered when architecting DAA 

simulations as it has a first-order effect on the resulting safety statistics and airspace usability 

assessments. In the table, the notation used are: 

No DAA: Unmitigated (ownship does not follow sXu guidance) 

With DAA: Mitigated (ownship does follow sXu guidance) 
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OpVal: ACAS sXu Operational Validation Report (Sept 2022) 

Results: Current CAL Results 

Target: Target Safety Value 

Table 7. Analysis for varying levels of clutter. (Note, reduction in safety statistics are due to likely 

simulation bias as noted in Section 3.2.1) 
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None 9791 259/2879 1/224 

0.0900 0.0045 

0.0254 9.8e-5 8.55 
0.001

30 
0.0235 0.0045 

0.4000 0.1800 

47 10092 242/2879 2/224 0.0841 0.0089 0.0238 1.9e-4 8.36 
0.001

10 

79 10145 238/2879 1/224 0.0827 0.0045 0.0234 9.8e-5 8.56 
0.000

98 

106 10171 189/2879 0/224 0.0656 0 0.0186 0 9.26 
0.001

10 

260 10176 170/2879 1/224 0.0590 0 0.0167 9.8e-5 10.17 
0.001

20 

 

Table 8. LoWC changes based on levels of clutter.(Note, reduction in safety statistics are due to likely 

simulation bias as noted in 3.2.1) 

Clutter Flux Density 

(False tracks/nm2-hr) 
Alerts 

LoWC 

(with DAA/ no 

DAA) 

LoWC  

Subtracted from 

Nominal 

LoWC  

Added to Nominal 

Net 

change 

None 9791 259/2879 - -  

47 10092 242/2879 158 141 -17 

79 10145 238/2879 178 157 -21 

106 10171 189/2879 202 132 -70 

260 10176 170/2879 207 118 -89 

 

For this clutter set, total number of LoWCs are reduced as more clutter is added. Some LoWCs 

are added, but more are subtracted, thus the observed net reduction in LoWC with the addition of 

clutter, as shown in Figure 26. Consider introducing the discussion here about the simulation bias 

and that this is not believed to be a real effect but an artifact of the simulation setup that is biased 
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towards creating encounters. Alternatively, mention that the reduction in LoWC will be discussed 

later and that these results are believed to be a simulation artifact.  

  

 

Figure 26. Histogram showing differences in LoWC with and without Clutter. Chart on the right 

indicates that LoWC is due to early alerting and diverting of the ownship. When a delay to alert only 

when in proximity to the intruder (figure on the right), the LoWC rates better align with the intruder-

only data sets. 

 

 

LoWCs reduce with more clutter likely because: 

1. Particular clutter tracks are relatively short-lived (order of tens of seconds), so likely to 

cause alerts but NOT LoWC, 

2. Encounters are set up such that an intruder is likely to cause an alert, and  

3. Increased clutter causes the ownship to maneuver away from the intruder sooner than it 

would otherwise, and there’s no effort to return to course. 

To address item 3, one needs to show that RA’s issued against clutter mostly happen before an 

alert would have occurred against the intruder, thus causing the ownship to maneuver in a random 

direction with respect to the intruder.  

3.2.2 Safety Analysis: 10K Nominally Alerting Encounters 

The LoWC/NMAC analysis was applied to the clutter as though the clutter tracks represented real 

vehicles. This was done only as an exercise to demonstrate the increased track density in the 

airspace. The LoWC/NMAC statistics in the two right-most columns of Tables 9-10 do not 

represent safety statistics as typically defined but were computed to aid in understanding the 

conditions in the airspace. 
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Table 9. Analysis including treatment of clutter as ‘Real’ tracks. (Note, reduction in safety statistics are 

due to likely simulation bias as noted in Section 3.2.1) 

  
Ownship+Intruder  

encounter statistics 

Ownship+intruder+clutter encounter statistics 

(Clutter treated as “real” vehicle) 

Clutter Flux 

Density  

(False 

tracks/nm2-hr) 

Alerting 

Encounters 

LoWC 

(with 

DAA/no 

DAA) 

NMAC 

(with DAA/no 

DAA)   

LoWC 

(with DAA/no DAA)   

NMAC 

(with DAA/no DAA) 

None 9791 259/2879 1/224   

47 10092 242/2879 2/224 1581/3937/ 62/288 

79 10145 238/2879 1/224 2784/5472 109/424 

106 10171 189/2879 0/224 4260/7420 123/605 

260 10176 170/2879 1/224 6262/8621 138/822 

 

Table 10. Analysis including treatment of clutter as ‘Real’ tracks in percentage. (Note, reduction in safety 

statistics are due to likely simulation bias as noted in Section 3.2.1) 

  
Ownship+intruder  

encounter statistics 

Ownship+intruder+clutter encounter 

statistics 

(Clutter treated as “real” vehicle) 

Clutter Flux 

Density 

(False 

tracks/nm2-hr) 

Alerting 

Encounters 
LoWC (%) NMAC(%) LoWC NMAC 

None 9791 9 0.4 - - 

47 10092 8.4 0.9 40.2 21.5 

79 10145 8.2 0.4 50.9 25.7 

106 10171 6.6 0 57.4 20.3 

260 10176 5.9 0.4 72.6 16.8 

 

3.2.3 Non-alerting encounters, Full Clutter 

Discussions regarding the early alert conjecture included reference to the fact that the intruder encounters 

under study were pre-disposed to alerts leading to ‘encounter bias.’ This effect may cause any early 

maneuver (due to clutter and before ownship-vs-intruder interaction) to inadvertently appear to increase 

safety by steering the ownship away from the intruder prematurely in the simulation. To further 

investigate this, the results in Table 11 show the results for intruders that were not on a conflict trajectory 
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with the drone. No DAA alerts occur when there is no clutter because aircraft are not on trajectories that 

would create a conflict. However, when clutter is added to the simulation, the clutter results in a DAA 

alert causing the drone to avoid the clutter which on occasion induces an encounter with the intruder 

aircraft. A significant percentage increase in LoWC is noted. Table 11. Analysis using 65K non-alerting 

encounters. 

  
Ownship+intruder  

encounter statistics 

Ownship+intruder+clutter 

encounter statistics 

(Clutter treated as “real” vehicle) 

Clutter Flux 

Density 

(False tracks/nm2-

hr) 

Alerting Encounters 
LoWC 

(with DAA) 

NMAC 

(with DAA) 

LoWC 

(with 

DAA) 

NMAC 

(with DAA) 

None 0 0 0 - - 

260 38100 9 1 8731 216 

 

Note that when intruders are not on a conflicting trajectory with the drone and there is no clutter, 

no LoWC or NMAC events occur. However, when clutter is introduced a significant increase in 

LoWC and NMAC events occur with intruder aircraft. LoWC goes from zero to 9 events which is 

more than a 900% (or 9x) increase. What is even more striking is the number of LoWC events 

with intruders and clutter tracks that are treated as aircraft. The perceived LoWC events rises to 

8,731. Both a significant increase in real NMAC events (x9) that increases the potential for a mid-

air collision and an even greater increase in perceived NMAC events (x8731) many of which are 

illusionary and increase operational burdens occurs due to the introduction of clutter. 

3.2.4 Delayed clutter 

Discussions regarding the decrease in LoWC once the Ground Based Radar (GBR) clutter was 

introduced lead to the conjecture that early alerts by the clutter tracks were precluding the ownship 

vs. intruder encounter. The simulation was modified, as shown in Figure 27, to mask the clutter 

traffic until after the ownship versus intruder alert commenced. 
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Figure 27. Modification to mask clutter until after intruder triggers alert. 

Using this modified configuration, the conjecture of early alerting precluding the ownship versus 

intruder encounter was confirmed by the results shown in Table 12. That is, the number of LoWC 

increased with the addition of clutter so long as the ownship versus intruder alert happened to help 

compensate for the simulation artifacts and deficiencies discussed earlier. More work on this topic 

to improve clutter analysis in simulations is recommended as an area for future research. 

 

 

 

Table 12. Results following simulation modification where clutter is hidden in the simulation until after 

there is an alert on the intruder aircraft. 

  
Ownship+intruder  

encounter statistics 

Ownship+intruder+clutter 

encounter statistics 

(Clutter treated as “real” 

vehicle) 

Clutter Flux Density 

(False tracks/nm2-hr) 

Intruder 

Alerting 

Encounters 

LoWC 

(with DAA) 

NMAC 

(with DAA) 

LoWC 

(with DAA) 

NMAC 

(with DAA) 

None 9233 234 1 - N/A -N/A 

260 9206 318 1 3813 148 

 

By comparing the top row with the bottom row when only considering events with real intruders, 

the introduction of clutter resulted in 318/234 = 35% more LoWC events. This indicates that the 

introduction of clutter had a significant impact on keeping aircraft separated. More data is needed 

to estimate the percent increase in NMAC events with intruders due to the introduction of clutter.  
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By examining the bottom row, the delayed clutter resulted in roughly 3813/318 =1,200% (120x) 

more perceived LoWC events with the clutter than actually occurred with intruders. It also resulted 

in roughly14,800% (148x) more reported NMAC events with the clutter than actually occurred 

with intruders. The addition of the clutter had a significant operational impact on the number of 

perceived and recorded events with most of the perceived events being illusionary occurring with 

the clutter rather than an actual intruder.  

The introduction of clutter resulted in a significant percentage increase in reduced separation 

events in the simulation as well as a much larger increase in perceived events and operational 

burden. More work on this topic to improve clutter analysis in simulations is recommended as an 

area for future research. 

 

 

3.2.5 AGT Transition 

Initial simulations of both the alerting and non-alerting encounter sets with clutter were configured 

such that the intruder aircraft utilized the ADS-B interface to ACAS sXu. Discussions with the 

ACAS development team concluded that the choice of using ADS-B as the interface for the 

intruder while using the Absolute Geodetic Track (AGT) interface for the clutter might affect the 

results, since the DAA algorithm would treat the intruder and the clutter traffic somewhat 

differently. To investigate this issue, the simulation was modified so that the intruder used the 

AGT interface as well, and the safety statistics were compared. Table 13 shows the comparison 

showing no significant difference in the results. 

Table 13. Statistics using ADS-B vs AGT DAA interface for intruder. 
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ADS-B 
9791 259/2879 1/224 0.0899 0.0045 0.0254 9.8e-5 8.55 0.00130 

None 

AGT 
9935 276/2879 0/224 0.0959 0 0.0271 0 7.73 0.00120 

260 

ADS-B 
10176 170/2879 1/224 0.0590 0 0.0167 9.8e-5 10.17 0.00120 

160 

AGT 
10177 169/2879 0/224 0.0587 0 0.0166 0 9.83 0.00110 

 

3.2.6 Operational Suitability Analysis 

Operational suitability analysis was performed on results using the alerting encounters together 

with the GBR clutter data. Figure 28 shows that increased clutter leads to a longer time spent in an 

alert state, but that time is split over multiple separate alerts. 
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Figure 28. Total alert duration and number of split alerts per encounter. 

 

The results in Figure 29 show that the varying clutter levels had only a small effect on the number 

of horizontal reversals per encounter and virtually no effect on the number of vertical reversals. 

Of note, in these figures, full clutter represents 260 targets/(nm2-hr) and the eighth represents 47 

targets/(nm2-hr) appearing in the preceding tables. 

 

 

Figure 29. Number of reversals per encounter with varying levels of clutter. 

 

3.3 EO/IR results 

3.3.1 MSU Variable Density Clutter 

Three sets of clutter data were produced and injected into the simulation Figures 30-32 show the 

overlay of the clutter data on the alerting encounter set. 
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Figure 30. Low density clutter. 

 

Figure 31. Medium density clutter. 

 

Figure 32. High density clutter. In these charts, ownship trajectories are shown in blue, intruders in red, 

and clutter in green. 
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Table 14 gives a summary of the safety statistics with each of the clutter datasets provided by 

MSU. Details for the clutter statistics can be found in Section 2.  

Table 14. Summary of encounters using EO/IR sensor data with varying clutter characteristics. OpVal 

refers to previously published data from MIT for the same encounters, Results are from simulations 

conducted in this work, and the Target are the ASTM LoWC ratio and NMAC risk ratios.  (Note, 

reduction in safety statistics are due to likely simulation bias as noted in 3.2.1) 
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%

) 

OpVal  

Results 

Target 

None 9233 234/2716 1/213 

0.0900 0.0045 

0.0253 1.08e-4 8.62 0.00140 0.0862 0.0047 

0.4000 0.1800 

Low 9092 271/2716 1/213 0.0998 0.0047 0.0294 1.1e-4 9.50 0.0018 

Medium 9193 273/2716 2/213 0.1005 0.0094 0.0296 2.2e-4 8.52 0.0017 

High 9169 251/2716 2/213 0.0924 0.0094 0.2720 2.2e-4 9.460 0.0014 

3.3.2 Operational Suitability Analysis 

The operational suitability analysis was repeated using the model-based clutter data and showed a 

noticeable effect using the MSU clutter data. Figure 33 shows that the EO clutter led to a significant 

increase in alert duration and a noticeable increase in the number of split alerts. Neither clutter 

data set caused a significant increase in horizontal or vertical reversals. 

 

Figure 33. Number of split alerts and alert durations per encounter for model-based clutter. 

3.3.3 MSU Clutter Data: Safety Analysis 

The safety analysis performed on simulation results obtained using the MSU clutter data was 

similar to what was obtained using the OSU GBR clutter. The EO clutter caused a relatively small 

increase in LoWC while the model-based clutter caused a relatively small decrease in LoWC.  
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Table 15. Analysis using alerting encounters with model-based clutter data. (Note, reduction in safety 

statistics are due to likely simulation bias as noted in Section 3.2.1) 
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None 9233 234/2716 1/213 

0.0900 0.0045 

0.0253 
1.08e-

4 
8.62 0.00140 0.0862 0.0047 

0.4000 0.1800 

EO 9201 279/2716 2/213 0.1027 0.0094 0.0302 9.4e-3 9.18 0.00140 

Synthetic  

EO/IR Data 
9203 181/2716 2/213 0.0666 0.0094 0.0196 2.6e-4 8.97 0.00130 

4 TERMINAL MODELING AND SIMULATION RESULTS 

4.1 Simulation Setup 

From the one million trajectories, 20,000 were selected for clutter testing in MSU’s modeling and 

simulation system. Down sampling was accomplished by defining an approach corridor 

corresponding to a full-scale deflection of the approach indicators used for precision Instrument 

Landing System (ILS) or Area Navigation (RNAV) approaches. Details for the geometry of this 

corridor are provided in Figure 34. During the simulated encounters, if the aircraft penetrated this 

boundary, the approach was terminated and tabulated as a missed approach. It should be noted that 

adopting the corridor width corresponding to a full deflection of the guidance cues provided during 

standard IFR operations is somewhat dubious. This wider corridor boundary used in simulation 

allowed for using more trajectories in the MIT dataset owing to the Bayesian framework they were 

generated with. The number of deviations resulting in the ownship aircraft departing the corridor 

boundary due to a DAA alert are expected to underrepresent the number of actual departures out 

of an actual ILS approach that had a more realistic corridor. However, the results presented in the 

following sections can still be interpreted in a way that makes the impact of clutter obvious in the 

trends surrounding missed approaches, LoWC, etc. even though impacts may be underrepresented. 

Figure 35 shows the resulting down sampled approaches in pink, superimposed on a larger subset 

of the trajectories in blue. The next section details the modeling and simulation results obtained 

using MSU’s simulation environment with these ownship and intruder models with varying levels 

of clutter provided by ground-based DAA sensors.  
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Figure 34. Approach corridor definition for lateral boundaries (top), and vertical boundaries (bottom). 

 

Figure 35. Subset of ownship trajectories meeting the missed approach threshold requirements, shown in 

pink. Blue tracks do not intersect the approach corridor and were discarded.  

4.2 Ground-Based EO/IR Results 

Figure 36 to Figure 39 illustrate four levels of clutter data (Low, Medium, Medium High, and 

High) distributed within an approximate 10,000 ft radius from the origin, identified as the airport.  

In these figures, the clutter-flux density? is similar to the previous enroute testing and summarized 

in Table 16.  Each figure is organized from left to right, beginning with unfiltered raw data and 

followed by data processed through two types of filters. These two filtered views of the data are 

based on the assumption that clutter is significant if the radar has maintained tracking for at least 

three or five seconds, respectively. This approach allows for distinguishing meaningful clutter 

from transient data. Table 17 provides a summary of the total number of samples and tracks 

associated with each filter type and indicates the impact of filtering. The total number of samples 

in Table 17 represents the amount of data collected by the sensor over a 30-minute period, and the 
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number of tracks refers to the count of sequentially meaningful data points assigned arbitrary 

identifiers within the collected data. Notably, differences across clutter levels are observed, with 

an approximate variation of 600 samples and around 50 tracks per level, reflecting how filtering 

can reduce noise and improve the clarity of significant radar returns. 

Table 16. Clutter-flux densities tested in the terminal environment in false tracks/(nm2-hr). 

Filter High Med-high Med Low 

None 437 315 188 85 

3s 113 83 53 21 

5s 68 52 31 13 

 

 

 

Figure 36. Low-rate clutter raw (left), with 3 second filter (middle) and 5 second filter (right). 

 

 

Figure 37. Medium-rate raw (left), with 3 second filter (middle) and 5 second filter (right). 
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Figure 38. Medium-high rate raw (left), with 3 second filter (middle) and 5 second filter (right). 

 

 

Figure 39. High-rate raw (left), with 3 second filter (middle) and 5 second filter (right). 

 

Table 17. Number of samples and tracks for different levels of clutter on filtering options. 

Clutter Levels Filter Number of samples Number of tracks 

Low 

No filtering 862 256 

3s filtering 645 64 

5s filtering 566 41 

Medium 

No filtering 2013 564 

3s filtering 1546 160 

5s filtering 1310 93 

Medium High 

No flittering 3197 946 

3s filtering 2394 250 

5s filtering 2069 156 

High 

No flittering 4266 1311 

3s filtering 3125 340 

5s filtering 2652 204 
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This report conducts a detailed analysis of clutter’s impact by examining four distinct cases that 

incorporate one intruder and varying levels of clutter across four configurations. Figure 40 

provides a key to the symbols used in the graphs shown in Figures 41 through 45. In situations of 

Loss of SST or Loss of ART, the colors of the information related to the ownship change, and 

when clutter enters the ART, it is represented by red rectangles with an indication of the direction 

of movement, which is a notable feature. In a Loss of ART situation, the desired heading of the 

ownship points to the mid-angle of the recovery band.  Figure 41 through Figure 44 depict the 

chronological progression of flight trajectories for each of these configurations: (1) ownship only, 

(2) ownship + intruder, (3) ownship + clutter, and (4) ownship + intruder + clutter. An example 

scenario featuring a certain encounter set with low-level clutter is provided for clarity in assessing 

the influence of variables and to enhance the reliability of the findings. In Figure 41, the flight 

adheres to a funnel-shaped landing approach typical of the ownship-only scenario, demonstrating 

a direct and stable approach path. [consider adding a description of the approach corridor 

represented by the gray wedge, a dotted track tail, a ghost path that the drone is attempting to 

follow for the ILS approach, and helping the reader to interpret what the forward projected black 

and blue lines are. Likewise consider helping the reader with descriptive text to know what the red 

lines are for the intruder, to notice how ownship lines change colors with alerts, etc. I had to study 

it for a while and still have a few questions]. Figure 42 through Figure 44 provide a more complex 

picture; in the second and third graphs of each, the timing and nature of evasive maneuvers 

executed to avoid the intruder or clutter are displayed, with the final graph showing the trajectory 

as the ownship approaches the target. Figure 45 expands this analysis to illustrate the final 

trajectories under varying levels of clutter for the most complex case: ownship + intruder + clutter. 

As clutter intensity increases, the frequency and complexity of evasive maneuvers intensify, 

resulting in highly intricate flight paths that significantly diverge from the standard approach, 

underscoring the substantial influence of clutter on flight path behavior as the ownship attempts to 

reach its target. 
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Figure 40. Description of symbols used in the trajectory graphs shown below. 

 

 

Figure 41. Flight trajectory in chronological order (left to right) of ownship-only case. 
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Figure 42. Flight trajectory in chronological order (left to right) of ownship + intruder case. 

 

 

Figure 43. Flight trajectory in chronological order (left to right) of ownship + clutter (Low) case. 
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Figure 44. Flight trajectory in chronological order (left to right) of ownship + intruder + clutter (Low) 

case. 

 

 

Figure 45. Flight trajectory of ownship + intruder + clutter for Low/Medium/Medium High/High (left to 

right) cases. 

While the preceding figures give some qualitative indication of the impact of clutter density on an 

individual flight path, the quantitative statistics give a more complete picture. First, the impact of 

filtering is considered for four different scenarios, 1: Ownship only, 2: Ownship + intruder, 3: 

Ownship + clutter, and 4: Ownship + intruder + clutter. The data is presented in this way to allow 

the reader to provide a baseline when comparing increasingly complex operational scenarios and 

so the effect of the ownship maneuvering relative to the intruder versus clutter can be better 

understood. Tables 18 and 19 provide the statistics for the average alerts per flight and average 

alerts per minute for the four outlined cases using three- and five-second filters. The ownship-only 
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cases provide a benchmark of the simulation by producing no alerts, and the ownship + intruder 

data corresponds to the selection of 10k nominally alerting and 10k non-alerting cases (alerting 

roughly half the time). The ownship + clutter data gives a substantial rise in the number of alerts 

and the duration under alert, indicating a significant impact on operations, especially in the high-

clutter case with 40 alerts and 15 minutes spent under alert. The final case considering 

ownship+intruder+clutter shows a general increase in the number and duration of the alerts, except 

in the high-clutter case. It is believed that the high-clutter case produced increasingly erratic 

guidance cues and reversals pushing the ownship further away from the intended landing path and 

the intruders, much like the results presented for the enroute operations. Therefore, this decrease 

in alerts should not be viewed as somehow beneficial. Table 19 considers the same cases with a 

five-second filter applied to the clutter data. Here, the benefits of increasing the filter time 

primarily affect the medium-high and high filter data, reducing the number and time under alert 

by half. However, for a nominally three- to four-minute approach, this still results in approximately 

one alarm every 7.5 seconds. 

Table 18. Average of alerts per flight and average of alerts per minute for 3-second filtered clutter data. 

3 sec filtering 
low medium medium-high high 

Total / min Total / min Total / min Total / min 

Ownship 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Own + Int 0.52 0.24 0.52 0.24 0.52 0.24 0.52 0.24 

Own + Clu 0.23 0.11 7.21 4.11 16.46 5.25 39.36 14.51 

Own + Int + Clu 1.39 0.61 6.85 3.14 20.54 6.43 35.82 12.68 

 

Table 19. Average of alerts per flight and average of alerts per minute for 5-second filtered clutter data. 

5 sec filtering 

low medium medium-high high 

Total / min Total / min Total 
/ 

min 
Total / min 

Ownship 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Own + Int 0.52 0.24 0.52 0.24 0.52 0.24 0.52 0.24 

Own + Clu 0.21 0.10 6.81 2.41 8.26 3.97 21.10 7.96 

Own + Int + 

Clu 
1.35 0.60 6.18 2.90 12.23 3.48 16.01 5.85 

 

Note that in Table 19 even under low clutter conditions with 5 seconds of filtering, that the 

Ownship + Clutter case results in 0.21 alerts per approach flight. In other words, in roughly 20% 

of simulated approaches the low clutter case resulted in the ownship receiving a DAA alert and 

maneuvering to avoid a perceived intruder that was actually a clutter track. This amount of ownship 

avoidance maneuvering would likely have a significant impact on ATC coordination and ATC 
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communication with the remote pilot as compared to existing operations today where very few 

crewed aircraft perform an avoidance maneuver while on approach because ATC has already 

separated them from most of the traffic. The results of the low clutter case with a 20% likelihood 

of a DAA alert on approach suggests that even more robust track classification and filtering are 

needed for good integration of UAS into airport environments than the low clutter case. The 

medium (6.81), medium-high (8.26), and high clutter (21.1) cases are worse with multiple DAA 

alerts and maneuver actions occurring due to clutter for every approach attempt.  

Tables 20 through 23 detail the impacts of increasing clutter levels on missed approaches, LoWC, 

NMACs, and reversals. In this data, the baseline cases selected resulted in 6.5% of approaches 

being missed. This is higher than real-world estimates of IFR operations in instrument 

meteorological conditions (Blajev & Williams 2017) and is a result of the Bayesian path generation 

in the MIT dataset. Using this higher missed approach baseline, the effects of clutter are still clearly 

evident, with a nearly 6-fold increase in the high-clutter case. It should be noted that the final case 

of ownship+intruder+clutter is not additive owing to the maneuvering taking place.  The statistics 

for LoWC and NMACs generally follow the same trends, with a substantial increase in both for 

the high-clutter case. Reversals also increase with clutter levels to nearly 100% in the high-clutter 

case, equating to a severe impact on airspace usability.  

Table 20. Missed approach percentage, LoWC, NMAC, and reversals for low-clutter case (5s filter). 

Low clutter 

5 second filtering 
Missed 

Approach 
LoWC NMAC Reversals 

Ownship only 6.5% 0.0% 0.0% 0.0% 

Ownship + Intruder 27.5% 2.6% 0.0% 0.0% 

Ownship + Clutter 12.3% 1.0% 0.0% 0.2% 

Ownship + Intruder + 

Clutter 

31.4% 6.4% 0.6% 44.1% 

 

Note that Ownship + Clutter results in 5.8% more missed approaches than Ownship only. Even in 

low clutter, the increase in missed approaches due to clutter may be significantly more than the 

existing rate of real-world IFR missed approaches. When combined with the simulation setup that 

underrepresents missed approaches due to the use of a wider simulation approach corridor, the 

results suggest that even low clutter conditions may not be adequate for good UAS integration 

when on approach.     
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Table 21. Missed approach percentage, LoWC, NMAC, and reversals for Med-clutter case (5s filter). 

Medium clutter 

5 s filtering 

Missed 

Approach 

LoWC NMAC Reversals 

Ownship only 6.5% 0.0% 0.0% 0.0% 

Ownship + Intruder 27.5% 2.6% 0.0% 0.0% 

Ownship + Clutter 17.0% 24.1% 1.2% 16.7% 

Ownship + Intruder + 

Clutter 

36.3% 27.7% 2.3% 56.5% 

 

Table 22. Missed approach percentage, LoWC, NMAC, and reversals for Med-High-clutter case (5s 

filter). 

Med-High clutter 

5 s filtering 

Missed 

Approach 

LoWC NMAC Reversals 

Ownship only 6.5% 0.0% 0.0% 0.0% 

Ownship + Intruder 27.5% 2.6% 0.0% 0.0% 

Ownship + Clutter 38.5% 29.4% 4.3% 61.8% 

Ownship + Intruder + 

Clutter 

67.6% 43.9% 6.8% 75.1% 

 

Table 23. Missed approach percentage, LoWC, NMAC, and reversals for High-clutter case (5s filter). 

High clutter 

5 s filtering 

Missed 

Approach 

LoWC NMAC Reversals 

Ownship only 6.5% 0.0% 0.0% 0.0% 

Ownship + Intruder 27.5% 2.6% 0.0% 0.0% 

Ownship + Clutter 68.1% 63.8% 6.4% 91.3% 

Ownship + Intruder + 

Clutter 

78.9% 48.5% 5.1% 82.4% 

 

5 CLUTTER IMPACT ON OPERATIONS 

5.1 Overview 

MSU conducted a series of live flight DAA tests using a large UAS and a crewed aircraft in various 

encounter geometries. The large UAS was equipped with a multi-camera DAA system capable of 

detecting intruder aircraft at distances of several thousand feet. Additionally, a cooperative ADS-

B In sensor captured signals from nearby aircraft, including the crewed test aircraft. 
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Encounters were designed to produce horizontal NMACs with a variable safety offset in the 

vertical direction for safe flight testing. Live aircraft detection data was streamed to a dedicated 

User Interface in the Ground Control Station (GCS), displaying the relative position of any 

detections for UAS pilots. 

These tests provided researchers with field data on true and false detections for future simulation 

modeling. Upon completion of the flight test program, pilots and flight test engineers were 

surveyed for qualitative feedback on the overall user experience, troubleshooting issues, and the 

effect of clutter on maintaining well clear of the crewed aircraft. 

5.2 Description of Systems 

To mitigate potential system faults and the risk of DAA system crashes or corruption of the primary 

autopilot's software, researchers integrated an isolated secondary autopilot with telemetry sensors. 

This autopilot communicated with the onboard GPS, non-cooperative and cooperative sensors, and 

relayed data to a companion computer responsible for downlinking information to the GCS. 

The system architecture included: 

1. A primary autopilot for core flight functions; 

2. An isolated secondary autopilot for DAA operations; 

3. Cooperative (ADS-B) and non-cooperative sensors; 

4. A companion computer for data processing and downlink; and  

5. GCS visualization software for pilot interface.  

 

 

Figure 46. Basic schematic of the primary and the isolated secondary autopilot onboard the large UAS. 

The GCS software displayed cooperative and non-cooperative detections differently, with pilots 

trained to distinguish between them. The system generated alerts of varying severity, visualized as 

yellow or red arcs on the user interface, indicating threat locations and areas where the ownship 

aircraft should avoid maneuvering. Aural alerts using the term "traffic" complemented the visual 

indicators. 

5.3 Field Tests 

Researchers developed test plans to evaluate the interaction between a large UAS and various 

crewed aircraft at different altitude separations, assessing the DAA system's effectiveness. 

Secondary objectives included gathering qualitative data on the visualization software's ability to 
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logically position intruders relative to the ownship, and the impact of visual and audio alerts on 

pilot awareness. 

A "wagon-wheel" approach was employed to vary relative angles between the ownship and 

intruder. Over 100 encounters were conducted using these configurations: 

1) Non-cooperative sensor and cooperative sensor on and alerting; 

2) Only non-cooperative sensor on and alerting; and  

3) Only cooperative sensor on and alerting. 

For each encounter, the crewed aircraft varied its flight plan to achieve the desired geometry, while 

the UAS maintained a predefined North-South repeating path under GCS pilot supervision. Safety 

margins were maintained through established "Knock-it-off" criteria. 

5.4 Surveys 

A short list of research questions was targeted for the field testing of the system of systems within 

the flight test plan. Researchers wished to understand the role of the visualization and alerting 

system in the GCS cockpit, and to what level the systems benefit or increase the workload for the 

pilots. The following lists the basic questions researchers sought responses for. 

A. How might the additional display (the DAA user interface within the GCS) have added 

workload to your PIC duties? 

B. What possible situational awareness benefits did you encounter from the additional 

sensors? 

C. Were there any issues or troubleshooting with the additional hardware and software? 

D. How often were you distracted by unnecessary alerts or information being displayed? 

E. What do you believe caused this distraction? 

The research team, including the pilots and flight test engineers, individually answered and were 

given time for any additional unprompted comments.  

5.5 Results 

Only two of the previously planned configurations were tested, as the growing understanding of 

the system and its limitations prompted the cancellation of the third (cooperative sensor only) 

configuration. 

One key finding was the onboard non-cooperative sensor detected the intruding aircraft during 

every encounter, and on its own, in the second configuration, rarely detected clutter nor alerted 

falsely. 

Therefore, the results focus on the first configuration in which either sensor could detect clutter, 

other non-test aircraft, or contribute in some way to the alerting pipeline. Figure 46 visualizes a 

world cloud of the common responses from the field testing for prompt E regarding the possible 

sources of the distractions generated by the GCS visualization tool. Extraneous or irrelevant words 

were thrown out to parse the data for analysis. 
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Figure 47. Word cloud of most prominent words, visualized by larger fonts, used by the research team 

when qualitatively evaluating the DAA system’s clutter. 

The most repeated word was found to be “yellow,” as the team found in testing that the “alerting 

band” the DAA algorithm used to visualize intruders that may become a threat most often appeared 

on the user display. This yellow band would generally also be accompanied by an audio cue to 

alert the operators of an intruder track being processed by the DAA algorithm. Important to note 

is the test area was limited to near airport operations due to Visual-Line-of-Sight restrictions. 

However, both test aircraft were vertically displaced from the airport operational volume. 

Throughout the tests, a few general aviation aircraft either entered the terminal airspace, taxied, or 

took off from the runway. The results showed that in many instances, aircraft that the large UAS 

operators would normally not concern themselves with tracking during nominal operations would 

cause these yellow-banded alerts. In post-processing of the data, it was determined that grounded 

air traffic that were broadcasting ADS-B were the source of the alerts. 

Several responses included words such as noisy, noise, or sound-related terminology, indicating 

that the research team felt the audible alerts were distracting during the tests. In cockpit audio 

recordings, researchers determined several instances where a single intruder produced multiple 

audible alerts to the pilots. 

After collecting data on several encounters between the two aircraft participating in the tests, and 

in response to the presence of the nuisance alerts, the flight test team elected to turn off the alerting 

algorithm and continue testing with only visualization of ADS-B and non-cooperative tracks 

enabled. This led to the conclusion that the system of systems being evaluated should likely not 

operate with alerting enabled while performing terminal airspace operations, and alternative 

strategic or technical mitigations should be put in place to maintain an acceptable level of safety. 

5.6 Recommendations 

The research team recognizes the challenges of the systems used and the environment in which the 

systems were tested. The team determined a short list of recommendations for the system to be 

more operationally suitable. 

The first recommendation relates to the number of alerts per intruding aircraft. As the presence of 

an intruder in nominal operations is generally an infrequent occurrence, pilots already 

compartmentalize a portion of their workload dedicated to tracking that intruder. Repeated audible 

alerts should be minimized. 
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Second, a positive addition for user experience for any DAA display may be the ability to select 

and “cancel” certain tracks that the pilots can logically rule out. As traffic well outside of the test 

area but of known intention (such as a student and instructor pilot practicing touch and go’s) 

repeatedly became a visual and aural nuisance, the two member team of pilots operating the large 

UAS suggested an ability to select or drag the cursor over the interface to remove the traffic from 

the alerting cycle. 

Last, as every alerting arc or band was similar in width, in some instances the full 360-degrees 

around the aircraft became a yellow alerting band. This was caused by the presence of multiple 

intruders. Given no maneuver guidance, for this system, is ever provided for yellow alerting-level 

events, adding variable width of the arcs based on the proximity to the intruder causing that alert 

could help pilots quickly figure out which aircraft alert may soon evolve into higher severity alert 

levels. 

6 CONCLUSIONS 

This report outlines three different definitions for clutter used in the airspace analysis presented in 

Section 1. Namely, the first represents a pseudo flux of false tracks, normalized by a unit area 

(nm2) per unit time (hr). This flux appears throughout the remainder of the document and is the 

primary metric considered in the safety analyses as it represents both the spatial and temporal 

aspects of the clutter field and is easily scalable between encounter sets. When working with data 

collected from different DAA sensors, it becomes clear that clutter is not uniformly distributed in 

space or time. In this case, it may depend to first order on the sensitivity of the sensor to various 

environmental inputs such as birds, trees, reflections, moving ground targets, etc. In this case, it is 

instructive to consider the clustering of the clutter elements, or put more simply, the relative 

density of clutter at any given time. This metric captures what is often encountered in ground-

based sensors such as radar and EO/IR systems. Finally, a hybrid of the two is presented as a 

navigable fraction, or the likelihood of encountering clutter relative to the total amount appearing 

at any one time (related to clustering but considers ownship dynamics and DAA specifications).  

These metrics are used in conjunction with the encounter sets extracted from the MIT 

TCAS/MITRE dataset used in characterizing sXu for enroute encounters. This dataset was a 

suitable candidate for evaluating the effect of CFD as the range of vehicle speeds and altitudes 

were commensurate with the operating environments considered in this work. For fast-time 

simulations, a broad encounter set was chosen to allow for the incorporation of different clutter 

densities. This encounter set includes one million individual encounters corresponding to terminal 

to up-and-away flight trajectories. A second set of tests were conducted using terminal encounters 

extracted from datasets provided by MIT Lincoln Labs for straight-in approaches into a Class D 

airport with a single intruder. From this dataset, 20,000 trajectories were selected which 

corresponded to a standard approach boundary provided by an onboard course deviation and 

glideslope indicator. For the terminal encounters, the DAIDALUS DAA algorithm was used in 

lieu of sXu.  

The encounter geometries provided the test cases for assessing the impact of various clutter fluxes 

and spatial/temporal characteristics. For this work, real data provided by ground-based radar 

systems and EO/IR sensors was chosen as it allowed for rapid tuning and evaluation of the impact 

of fast-time clutter, or targets that appear randomly and persist for times on the order of seconds, 
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and clutter produced by birds/ground traffic that is highly correlated and persists for longer periods 

of time. Within these two domains, the clutter density could be varied by adding/removing entire 

tracks, thus modulating the CFD used within individual encounters. The ground-based radar had a 

nominal CFD of 260 false targets/(nm2-hr). This corresponds to approximately four false targets 

per square nautical mile per minute. I.E., in any one square nautical mile, there is a 95% chance 

that four false targets will appear every minute. Each of these tracks persists for approximately 16 

seconds, corresponding to the tracking time constant built into the radar. While this certainly 

represents a substantial quantity of false tracks, it serves as a useful limiting test case in the safety 

evaluations. The Cassia-G model developed for the terminal environment produced a comparable 

level of CFD compared to the ground-based radar at OSU. This sensor was used to create a 

synthetic dataset outlined in Section 2 to allow for tuning of the clutter statistics. For the terminal 

encounters, a higher CFD of close to 437 false targets (nm2-hr) was used as the upper bound, 

corresponding to higher clutter densities expected to occur at altitudes below 1,000 ft above ground 

level.  

6.1 Enroute Encounters 

For the enroute testing, the effect of CFD  was evaluated by subdividing the 260 false targets/(nm2-

hr) produced by the ground radar by powers of two with a lower bound of 47 targets/(nm2-hr) (>1 

target/(nm2-min)). With the range of speeds considered in the enroute encounter sets, the ownship, 

flying at 30 kts, may encounter one to two false tracks per minute within one nautical mile. From 

the data presented in Section 3, the impact of this level of clutter with the maneuver bounds 

prescribed with sXu does not substantially change the LoWC or NMAC statistics compared to the 

baseline no-clutter case. As the CFD is increased, the total number of alerts also increases. It should 

be noted that the number of alerts is highly dependent on the simulation conditions, the most 

notable of which is the total simulation time. For the analyses presented in this report, the total 

simulation time is on the order of six minutes of flight time, corresponding to a UAS flying three 

nm at 30 knots. However, the trend of increasing alerts with clutter density does subsist when the 

total simulation time is changed. As a brief aside, the highest CFD from the ground-based radar is 

260 false tracks/nm2-hr, equating to approximately four false tracks per nm2-min. To explore this 

effect in greater detail, the simulations were rerun with different initial conditions on the clutter 

(clutter tracks were moved in space and time). The resulting statistics are representative of the 

mean with low overall standard deviations in the LoWC, inferring some degree of invariance with 

the precise location or emergence time of any given clutter track. 

Since the initial encounter set was highly saturated with alerting encounters, by definition, the 

ownship would be moving toward the intruder. Therefore, any deviation is likely to result in a 

short alert against the clutter and greatly reduces the chance that an alert will occur against the 

intruder (encounter bias) since no effort was made to return to the initial course. While an 

interesting observation, the real-world implications of random maneuvers while avoiding false 

clutter tracks likely create a far greater threat than any safety improvement offered by randomly 

maneuvering away from an encounter. This effect is likely multiplied in dense airspaces with 

multiple intruder aircraft, where any random path deviations may increase the likelihood of having 

an encounter with other intruder vehicles. However, it is academically interesting to note that the 

design of the simulations using existing encounter geometries with the inclusion of clutter is 

certainly not additive, owing to higher order effects such as random walk leading to the false notion 

that clutter improves safety. 
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Further tests on encounter sets including nominally non-alerting scenarios were also considered. 

This was done in an attempt to minimize the random walk effect noted earlier. In this case, 65,000 

non-alerting cases were used in lieu of the alerting cases previously discussed. The resulting 

simulations resulted in an increase in LoWC with increasing clutter levels. This indicates that the 

effect of clutter “steering” the ownship away from an intruder (i.e. encounter bias) is to some 

degree geometry dependent and may have a supplemental effect of steering it away from one target 

and toward another.  

In an attempt to address the time and random walk aspects of the encounter sets, a time offset was 

proposed in which the clutter was suppressed until the alert between the intruder and ownship was 

triggered. This prevented the ownship from moving away from the intruder ahead of the encounter 

and introducing an artificial bias in the simulations, a key source of variability in the LoWC and 

NMAC statistics presented. The results of this testing indicate that, there is still an increasing trend 

or alerts and reduced separation events with higher clutter levels. Future work should investigate 

more advanced flight models which incorporate a return to path function to assess a more realistic 

flight scenario. When the initial conditions were changed either via adding non-alerting trajectories 

or by adjusting the alerting time window, the random path fluctuations induced by clutter increased 

the total number of alerts and LoWC events. Moreover, the number of alerts and LoWC events 

scaled with the CFD.  

Increasing the total number of alerts has a direct impact on the operational suitability of the system. 

The analysis presented in Section 3.2.6 indicated that increased clutter leads to a longer time spent 

in an alert state, but that time is split over multiple separate alerts. This would certainly lead to an 

increased workload and a potential impact on safety if the pilot began heuristically filtering the 

nuisance alerts. Of note, while the alert levels increased, maneuvers resulting in a reversal or splits 

were still infrequent, even with the highest level of clutter. This indicates that there is a low chance 

that multiple clutter tracks on approach will create conditions resulting in a reversal or split. While 

there are certainly many underlying factors to this, it is suspected that the short duration of the 

false tracks was the primary reason for the lack of increased reversals/splits. 

The EO/IR data contained false tracks which were generally of longer duration (misidentified 

birds, etc.), but less frequent than the ground-based radar data. This difference is reflected in the 

small changes in alerts and LoWC, for the varying clutter levels. However, there was a substantial 

impact noted in the operational suitability analysis where a longer amount of time was spent in the 

alert state and the overall number of split alerts increased. Of note, the EO model detailed in 

Section 2.4 resulted in approximately the same number of alerts, but fewer LoWC events compared 

to the real sensor data. However, the reasons are likely due to variability in the initial conditions.  

6.2 Terminal Encounters 

Terminal encounter testing used 20,000 down sampled trajectories derived from a dataset of one 

million, focusing on clutter's impact during precision approaches. Simulations evaluated four 

scenarios: ownship only, ownship with an intruder, ownship with clutter, and ownship with both 

an intruder and clutter. Clutter levels ranged from low to high, with data filtered to distinguish 

significant clutter from transient noise using three-second and five-second tracking thresholds. 

Key findings revealed that clutter significantly disrupted flight path stability, especially under high 

clutter conditions. As clutter increased, evasive maneuvers became more frequent and complex, 

leading to deviations from standard approach paths. Metrics such as missed approaches, LoWC, 
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and NMACs showed substantial increases with clutter intensity. High-clutter scenarios led to 

nearly sixfold rises in missed approaches compared to baseline, (ownship-only) alongside 

increases in LoWC incidents and NMACs. Alerts per flight also rose sharply, with high-clutter 

scenarios generating alerts approximately every 7.5 seconds, even after filtering. 

Filtering reduced clutter-related alerts but did not fully mitigate operational challenges, 

particularly in high-clutter cases where guidance cues became erratic, causing significant 

deviations from the approach path. The study also highlighted that clutter might significantly 

increase remote pilot in command workload and reduce airspace usability. Substantial increases in 

the number of missed approaches have a severe impact on airspace usability in the terminal 

environment and would likely result in an increased burden on ATC facilities. Current best 

estimates indicate that only 0.1-0.3% of instrument approaches result in a missed approach. In the 

lowest clutter case considered, the missed approach percentage was more than an order of 

magnitude higher than that when considering only the effects of clutter, highlighting the sensitivity 

of terminal operations to even very low clutter densities.  

6.3 Clutter Impact on Operations 

MSU conducted DAA tests using a large UAS and crewed aircraft to evaluate the performance of 

cooperative and non-cooperative sensors in various encounter geometries. The system integrated 

a secondary autopilot, multiple sensors, and a GCS interface that displayed alerts as visual bands 

and aural cues. Tests revealed that non-cooperative sensors reliably detected intruders with 

minimal false alerts due to being operated well above potential sources of ground clutter, while 

cooperative sensors frequently produced nuisance alerts due to grounded aircraft broadcasting 

ADS-B signals. Repetitive audio alerts and visual distractions, such as persistent yellow alert 

bands, significantly increased pilot workload. Based on findings, researchers recommended 

minimizing redundant alerts, enabling pilots to cancel irrelevant tracks, and using variable-width 

alert bands to better indicate imminent threats. These improvements aim to enhance usability and 

safety, particularly in terminal airspace operations. 

 

6.4 Future Research Needs 

Future research should focus on demonstrating the impact of clutter classification and filtering 

techniques on the scenarios and baseline data presented in this report. Simple techniques such as 

3 & 5 second persistence filters used in the terminal encounters had a significant impact on the 

resulting number of alerts, alert duration, LoWC, and NMAC statistics. The impact of increasing 

the detection-to-track time was not considered in this work and would likely pose challenges in 

operating in maneuver-constrained environments such as the approach corridor presented herein. 

For ground-based radars used in this work, short duration tracks are highly correlated with 

atmospheric conditions (precipitation, etc.) and wildlife activity. Both of these sources have unique 

RCS characteristics which make them amenable to classification and filtering (Emshoff et al. 

2021) without imposing a strict time limit on track initiation. Other techniques such as machine 

learning and artificial intelligence have shown immense promise in classification and filtering, but 

do not provide guarantees on probability of false positives (aircraft classified as bird for example). 

Investigation of these techniques applied to the terminal environment in particular could provide 

a substantial improvement in the CFD appearing at low altitudes. Recent work on reducing alerting 
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thresholds in the takeoff/landing phases of flight could be incorporated to assess the impact of 

reduced alerts on pilot acceptance (Hoffler et al. 2019).  

Finally more work is needed on developing metrics to assess the nuisance value of clutter. In this 

work, alert rates, reversals, splits, and alert durations were used to assess non-safety related 

impacts of clutter. However, there was a larger impact of reducing confidence in the DAA systems 

that manifested from all of these sources, and likely others not captured in this work. The reduction 

in confidence led to the systems being deactivated in the terminal environment by the RPICs, 

which highlights the importance of assessing the human factors implications imposed by increased 

clutter.   
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